
Databases and Persistence
Up to now we've been either getting data from hard coded data in a file or from another service via
network calls. This is fine, but storing our own data can be helpful! This is where databases come in.
There are a ton of options for storing data not only in types of databases (such as document stores
versus relational databases), but also database services. For the sake of easiness (and something
new), we're going to use MongoDB, a document store!

MongoDB

Mongo is a document based database that is extremely easy to use! We're going to download and
work with a local instance, but if you are interested, it is possible to set up a cloud based mongo
instance via their website! In order to install mongo, follow the installation guide in their
documentation.

If you are running a windows machine the below steps may be necessary (Thank you Duc):

1. Once you install your mongodb, open Control Panel >
2. Make sure you in View By: Category >
3. Click on [System and Security] >
4. Click on [System] >
5. On left side, click on [Advanced system settings] >
6. On the bottom, click on [Environment Variables...] >
7. Look for PATH variable and if you don't have one, just create one >
8. EDIT > add this "C:\Program Files\MongoDB\Server\4.2\bin"
9. Open your favorite terminal and type "mongo --version" >

10. If something show up, then you are done)

Once you've installed mongo, go to your terminal and type mongo --version , you should see
something along the lines of:

➜ ~ mongo --version

MongoDB shell version v4.2.5

git version: 2261279b51ea13df08ae708ff278f0679c59dc32

allocator: system

modules: none

build environment:

 distarch: x86_64

 target_arch: x86_64

1

2

3

4

5

6

7

8

https://docs.mongodb.com/manual/installation/

If you type mongo you'll wind up opening a command line interface with mongo. Before we do that,
however, let's download some data first.

Inserting Datasets

First, we'll need to download a dataset to our machine. We're going to be using a pokemon dataset
from github. Navigate to a directory in your machine and type:

Once inside the mongo-pokemon directory, take a quick look at the seed.json file. This is the data
we'll be loading into our database. It's nothing but JSON, and, unsurprisingly, that's how the data will
be worked with (i.e. just like how we work with JSON objects).

To load our data, type:

What we're doing above is importing the seed array (as a json array) into the collection pokemons
inside of the database pokemon .

Viewing the Data

Inserting data is fine and dandy, but actually viewing it within your database is also nice! First, we'll
need to open mongo via our command line, so go to your command line and type:

This will open a mongo session. When you type that, it ought to have an output that looks something
along the lines of:

git clone https://github.com/ATL-WDI-Exercises/mongo-pokemon.git

cd mongo-pokemon

1

2

mongoimport -d pokemon -c pokemons --jsonArray < seed.json1

mongo1

(base) ➜ mongo

MongoDB shell version v4.2.5

connecting to: mongodb://127.0.0.1:27017/?

compressors=disabled&gssapiServiceName=mongodb

Implicit session: session { "id" : UUID("ff306c58-6817-4c8a-a39c-

b5c6f2ad46d1") }

MongoDB server version: 4.2.5

>

1

2

3

4

5

6

https://github.com/ATL-WDI-Exercises/mongo-pokemon

You may also have some warnings about deprecations and possibly a message or two about getting
a cloud instance. You can ignore those for now! One thing that we'll need to note is connecting to:
mongodb://127.0.0.1:27017/?compressors=disabled&gssapiServiceName=mongodb What we
really care about is knowing that initial URL, which we'll need later. For now, just remember, our base
url where our database lives is:

In order to access our database, we'll need to choose it! But first, type help into your mongo repl:

Here we get a list of options to work with! Now let's use some of these to find our database. In order
to do that, type in show dbs . This will display all of the database names that we have in our instance:

mongodb://127.0.0.1:270171

> help

 db.help() help on db methods

 db.mycoll.help() help on collection methods

 sh.help() sharding helpers

 rs.help() replica set helpers

 help admin administrative help

 help connect connecting to a db help

 help keys key shortcuts

 help misc misc things to know

 help mr mapreduce

 show dbs show database names

 show collections show collections in current database

 show users show users in current database

 show profile show most recent system.profile entries with

time >= 1ms

 show logs show the accessible logger names

 show log [name] prints out the last segment of log in memory,

'global' is default

 use <db_name> set current database

 db.foo.find() list objects in collection foo

 db.foo.find({ a : 1 }) list objects in foo where a == 1

 it result of the last line evaluated; use to

further iterate

 DBQuery.shellBatchSize = x set default number of items to display on

shell

 exit quit the mongo shell

>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

We have our newly added pokemon database at the very bottom! Let's use that, and then look at the
collections inside of it:

In order to access the data, we'll use the syntax db.<collection_name>.<function> . To retrieve all
of the data, you pass nothing into find, so your query looks like:

This will grab everything, but luckily will ask us if we want to continue printing the data (databases
can get very big).

To find a specific pokemon, we search on any key within the dataset! Let's search for Charizard:

> show dbs

admin 0.000GB

config 0.000GB

local 0.000GB

pokemon 0.000GB

>

1

2

3

4

5

6

> use pokemon

switched to db pokemon

> show collections

pokemons

>

1

2

3

4

5

db.pokemons.find()1

That's a lot of data! And it's incredibly difficult to read. In order to make it more readable for
ourselves, we can tack on a .pretty() to our commands:

> db.pokemons.find({name: "Charizard"})

{ "_id" : ObjectId("5e93c8708a0be3ec97f570fc"), "id" : "006", "name" :

"Charizard", "img" : "http://img.pokemondb.net/artwork/charizard.jpg", "type"

: ["Fire", "Flying"], "stats" : { "hp" : "78", "attack" : "84", "defense" :

"78", "spattack" : "109", "spdefense" : "85", "speed" : "100" }, "moves" : {

"level" : [{ "learnedat" : "", "name" : "dragon claw", "gen" : "V" }, {

"learnedat" : "", "name" : "shadow claw", "gen" : "V" }, { "learnedat" : "",

"name" : "air slash", "gen" : "V" }, { "learnedat" : "", "name" : "scratch",

"gen" : "V" }, { "learnedat" : "", "name" : "growl", "gen" : "V" }, {

"learnedat" : "", "name" : "ember", "gen" : "V" }, { "learnedat" : "", "name"

: "smokescreen", "gen" : "V" }, { "learnedat" : "7", "name" : "ember", "gen" :

"V" }, { "learnedat" : "10", "name" : "smokescreen", "gen" : "V" }, {

"learnedat" : "17", "name" : "dragon rage", "gen" : "V" }, { "learnedat" :

"21", "name" : "scary face", "gen" :

....

"method" : "Move Tutor FRLG" }, { "name" : "mimic", "method" : "Move Tutor

FRLG" }] }, "damages" : { "normal" : "1", "fire" : "0.5", "water" : "2",

"electric" : "2", "grass" : "0.25", "ice" : "1", "fight" : "0.5", "poison" :

"1", "ground" : "0", "flying" : "1", "psychic" : "1", "bug" : "0.25", "rock" :

"4", "ghost" : "1", "dragon" : "1", "dark" : "1", "steel" : "0.5" }, "misc" :

{ "sex" : { "male" : 87.5, "female" : "12.5" }, "abilities" : { "normal" : [

"Blaze"], "hidden" : ["Solar Power"] }, "classification" : "flame pokemon",

"height" : "5’07”", "weight" : "199.5", "capturerate" : 45, "eggsteps" :

"5120", "expgrowth" : "1059860", "happiness" : "70", "evpoints" : ["3 Sp.

Attack Point(s)"], "fleeflag" : "94", "entreeforestlevel" : "36" } }

1

2

3

4

5

> db.pokemons.find({name: "Charizard"}).pretty()

{

 "_id" : ObjectId("5e93c8708a0be3ec97f570fc"),

 "id" : "006",

 "name" : "Charizard",

 "img" : "http://img.pokemondb.net/artwork/charizard.jpg",

 "type" : [

 "Fire",

 "Flying"

],

 ...

 "classification" : "flame pokemon",

 "height" : "5’07”",

 "weight" : "199.5",

 "capturerate" : 45,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

For the sake of space, you've noticed that we've pared a lot of the data out. Take note that in our
JSON that we looked at earlier, there was no _id key. That key is a unique identifier for mongo! You
can create your own unique identifiers as well.

We could spend an entire week (or more) talking about the intricacies of mongo's system, but
knowing the basics for how to view your data within your command line is good enough! If you have
any other interest, please consult the documentation!

Working with Mongo in Node:

Having a working database is great, but it doesn't help us if we can't interact with it in our code! Let's
take our code from the previous lecture (middleware) and add on to it!

First, we need to add a package for us to interact with our database. There are a number of available
options, but we're going to use Mongoose! Mongoose is robust package that allows for us to quickly
and simply interact with our data in our mongo database.

Now that we have mongoose added to our code, we'll need to connect to our database! Let's start by
adding mongoose and opening a connection within our our index.js :

 "eggsteps" : "5120",

 "expgrowth" : "1059860",

 "happiness" : "70",

 "evpoints" : [

 "3 Sp. Attack Point(s)"

],

 "fleeflag" : "94",

 "entreeforestlevel" : "36"

 }

}

16

17

18

19

20

21

22

23

24

25

npm i mongoose1

const express = require("express");

const officeRouter = require("./routes/office/officeRoute");

const parksAndRecRouter = require("./routes/parksAndRec/parksAndRecRoute");

// NEW ROUTE *that doesn't exist yet!

const xfilesRouter = require("./routes/xfiles/xfilesRoute");

const logger = require("./lib/middleware/logger");

const app = express();

const swaggerUI = require("swagger-ui-express");

const swaggerDoc = require("./lib/swagger");

1

2

3

4

5

6

7

8

9

10

11

https://docs.mongodb.com/manual/core/index-unique/
https://docs.mongodb.com/manual/mongo/
https://mongoosejs.com/

In the above code, we're connecting to our database with the IP address of our mongo instance. Tt
may look familiar (i.e. almost exactly the same) as the url in the terminal! You might notice the
xfiles at the end of the mongoURL and you guessed it. That's going to be connecting to our
xfiles database. You definitely guessed that we're going to create a mongo instance for our xfiles
data! In the event that you already have a database named xfiles then you'll connect to it, but if
you don't, no worries! You've now created one!

To connect to our database, you'll need to use the mongoose.connect function and pass in
mongoURL . Notice that we're also passing in an object. You don't have to pass anything in now,
however, without useNewUrlParser: true and useUnifiedTopology: true , you will get
deprecation warnings (which basically mean that, in the future, you may run into some problems).

Next we extract our connection to dbConnection where we can then add some callback functions to
log an error if we run into an error, and also to note when we are connected to our database
instance!

Finally, we want to create a route /xfiles . That doesn't exist yet, but let's make it now!

const mongoose = require("mongoose");

// New DB Stuffs!

const mongoURL = "mongodb://127.0.0.1:27017/xfiles";

mongoose.connect(mongoURL, {

 useNewUrlParser: true,

 useUnifiedTopology: true

})

const dbConnection = mongoose.connection

dbConnection.on('error', err => console.error(err))

dbConnection.once('open', () => console.log("Connected to db"))

app.use(logger);

app.use("/api-docs", swaggerUI.serve, swaggerUI.setup(swaggerDoc));

app.use("/office", officeRouter);

app.use("/parksAndRec", parksAndRecRouter);

app.use("/xfiles", xfilesRouter); // NEW ROUTE!

const port = 3000;

app.listen(port, () => console.log("Now listening on port:", port));

console.log(`Swagger docs at localhost:${port}/api-docs`);

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Now, let's create a brand new route for characters from our favorite show: X-Files! We'll need to
create a new directory: xfiles and a file in there xfilesRoute.js

Let's start with our xfilesRoute.js being nothing more than a quick "hello world" styled file, and then
we can add the route in our index:

xfilesRoute.js

.

!"" index.js
!"" lib
!"" middleware
!"" bodyParser.js
$"" logger.js
$"" swagger.js
!"" package-lock.json
!"" package.json
$"" routes
 !"" office
 # !"" office.js
 # $"" officeRoute.js
 !"" parksAndRec
 # !"" parksAndRecRoute.js
 # $"" parksNRec.js
 $"" xfiles
 $"" xfilesRoute.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

const express = require("express");

const bodyParser = require("../../lib/middleware/bodyParser");

const sayHello = (req, res) => {

 res.send("The Truth Is Out There")

}

const xfilesRouter = express.Router();

xfilesRouter

 .route("/")

 .get(sayHello);

module.exports = xfilesRouter;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

So, now when we attempt to call our API's with a GET at localhost:3000/xfiles , we'll now receive:

Now that we have our endpoint set up, let's turn our server into a CRUD app! CRUD stands for
Create , Read , Update , and Delete , which are all methods we'll want to add to our server so that
we can add, read, update, and delete characters from the X-Files!

Creating a New Character

Before we can read, update, or delete a character, we'll need to create one first! And in order to
create a character, we'll need to create a new schema and model with Mongoose! Let's start by
creating a models directory, into which we'll place our xfilesCharacter model:

xfilesCharacter.js :

"The Truth Is Out There"1

.

!"" index.js
!"" lib
!"" middleware
!"" bodyParser.js
$"" logger.js
$"" swagger.js
!"" models
$"" xfilesCharacter.js
!"" package-lock.json
!"" package.json
$"" routes
 !"" office
 # !"" office.js
 # $"" officeRoute.js
 !"" parksAndRec
 # !"" parksAndRecRoute.js
 # $"" parksNRec.js
 $"" xfiles
 $"" xfilesRoute.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

const mongoose = require('mongoose')

const xfilesCharacterSchema = mongoose.Schema({

 lastname: {

 type: String,

 required: true,

1

2

3

4

5

6

In the above code, we've created a schema with mongoose, where we will now be accessing and
saving character data (i.e. a required firstname and lastname) defined by the schema. Finally, when
we export, we're exporting a model that will be stored in the xfilescharacters collection).

In order to access this in our program, we'll have to import our model, and access it:

xfilesRoute.js :

 },

 firstname: {

 type: String,

 required: true

 }

})

module.exports = mongoose.model("xfilescharaters", xfilesCharacterSchema)

7

8

9

10

11

12

13

14

const express = require("express");

const bodyParser = require("../../lib/middleware/bodyParser");

const xFilesCharacterModel = require('../../models/xfilesCharacter')

const getAllCharacter = async (req, res) => {

 try {

 const results = await xFilesCharacterModel.find()

 res.send(results);

 } catch (error) {

 console.error(error);

 res.status(500);

 res.send(error);

 }

};

const addXfilesCharacter = async (req, res) => {

 try {

 const xfilesCharacter = new xFilesCharacterModel({

 lastname: req.body.lastname,

 firstname: req.body.firstname

 });

 const result = await xfilesCharacter.save();

 res.send(result);

 } catch (error) {

 console.error(error);

 res.status(500);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

We created the sayHello function just to make sure our route was working, but now we can get rid of
it (or keep it if you want to know where the truth is)! In the above code, we've added a few things!
First and foremost, we brought in our mongoose model at line 3. We can't really do much without
that.

In the above code, we've added our insert data endpoint! For our first route, we're posting at the
basic route as well. Here we actually create a new model (at line 20), and then save it to our database
(at line 25):

On sending the post with a body similar to that of our schema, we receive an entirely new body with
the keys we sent, but with an _id and a __v . The _id is the same as the "_id" :
ObjectId("5e93c8708a0be3ec97f570fc") key value pairing we saw with Charizard above! That is
just the unique key. The __v you can just ignore for now, as it's the versionKey property. Now that
we've inserted a character, insert another one with the body:

Reading Data

 res.send(error);

 }

};

const xfilesRouter = express.Router();

xfilesRouter

 .route("/")

 .post(bodyParser.json(), addXfilesCharacter)

module.exports = xfilesRouter;

30

31

32

33

34

35

36

37

38

39

40

41

42

{

 "lastname" : "Scully",

 "firstname" : "Dana"

}

1

2

3

4

After creating a couple of characters, now let's see if we can retrieve them! Because it's the easier of
the two options (if you remember from the pokemon example above), let's see if we can just get
everything!

Just like how we used the find in the database repl, we just use the same general idea with our
schema! If we use our schema, and call find with no arguments, we'll receive everything!

...

const getAllCharacter = async (req, res) => {

 try {

 const results = await xFilesCharacterModel.find()

 res.send(results);

 } catch (error) {

 console.error(error);

 res.status(500);

 res.send(error);

 }

};

...

const xfilesRouter = express.Router();

xfilesRouter

 .route("/")

 .post(bodyParser.json(), addXfilesCharacter)

 .get(getAllCharacter);

module.exports = xfilesRouter;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

For getting a specific character, however, we'll need to pass in a parameter. Let's grab those
characters by their last names:

...

const getXfilesCharacter = async (req, res) => {

 try {

 const results = await xFilesCharacterModel.find({

 lastname: req.params.lastname,

 }).exec();

 res.send(results);

 } catch (error) {

 console.error("error", error);

 res.status(500);

 res.send(error);

 }

};

...

const xfilesRouter = express.Router();

xfilesRouter

 .route("/")

 .post(bodyParser.json(), addXfilesCharacter)

 .get(getAllCharacters);

xfilesRouter.route("/:lastname").get(getXfilesCharacter);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

You might be tempted to try to update data by just overwriting something, such as changing Dana
Scully to Medical Doctor, Dana Scully , and you'd be right in wanting to do so (she is a medical
doctor, after all), but if you were to attempt to overwrite based entirely off of values that are not the
unique _id , then you'll only create a new record:

Overwrite Attempt:

Get all:

module.exports = xfilesRouter;27

28

Updating Data

In order to update data, you'll need to find by a specific unique key! Let's write some code so that we
can update Fox Mulder with his _id :

...

const updateCharacter = async (req, res) => {

 try {

 const id = req.params.id;

 const character = await xfilesCharacterModel.findById(id)

 character.set(req.body);

 const result = await character.save();

 res.send(result);

 } catch (error) {

 console.error("error", error);

 res.status(500);

 res.send(error);

 }

};

...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

There are multiple things happening in the above code! First, notice that we're grabbing an ID out of
the params, and then using XfilesCharacter.findById(id) . There, we're grabbing an object that
specifically matches on only that ID (given that it's a unique identifier). Then, we're using the
character we assigned it to, and using character.set(req.body) . This is where we're passing in our
new and improved body to be saved over our previous data, which we then do with the following line
of character.save() .

Additionally, take note of the router we're using. We're passing in a parameter, but more importantly,
we're using put , a common http method to denote that we're updating data.

Removing Data

Often times you'll need to remove data from a given database, this can be for any number of reasons
(maybe you accidentally added two of the same characters?). For us, we're going to remove our
characters with the same route as the update:

const xfilesRouter = express.Router();

xfilesRouter

 .route("/")

 .post(bodyParser.json(), addXfilesCharacter)

 .get(getAllCharacter);

xfilesRouter

 .route("/:id")

 .put(bodyParser.json(), updateCharacter)

xfilesRouter.route("/:lastname").get(getXfilesCharacters);

module.exports = xfilesRouter;

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

...

const removeCharacter = async (req, res) => {

1

2

3

Here, we take in the id, and then choose the deleteOne method, and pass in the { _id: id } .
Let's try removing our duplicate Scully!

 try {

 const id = req.params.id;

 const character = await xFilesCharacterModel.findById(id)

 const result = await character.remove()

 console.log("Results? ", result)

 res.send(result);

 } catch (error) {

 console.error("error", error);

 res.status(500);

 res.send(error);

 }

};

const xfilesRouter = express.Router();

xfilesRouter

 .route("/")

 .post(bodyParser.json(), addXfilesCharacter)

 .get(getAllCharacter);

xfilesRouter

 .route("/:id")

 .put(bodyParser.json(), updateCharacter)

 .delete(removeCharacter);

xfilesRouter.route("/:lastname").get(getXfilesCharacter);

module.exports = xfilesRouter;

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

There are a ton of ways to expand further on Mongo, but for the time being (and because this isn't a
databases class), this is more than enough to know for how to store and retrieve information!

	Databases and Persistence
	MongoDB
	Working with Mongo in Node:

