
Middleware!

More often than note, you're going to want many of your endpoints to have the same functionality.
Imagine if we wanted to print a console.log every time a user hit our endpoint, or what if you wanted
to have a body parser for all of your endpoints that take in a body. You could copy and paste the
same code over and over and over again, but there's a better way! Middleware is ultimately just a
function (or series of functions) that sits between our server's port and the endpoints!

A middleware method is one that looks something along the lines of:

Notice that there's an extra parameter called next! Ultimately that takes us to whatever "next"
function there is in line of middleware. We'll see how that works a little further down. To use a
middleware function you simply need to write:

You may be wondering "Hey, we've used app.use" before! What's this about?" and you'd be
absolutely right! We do use it for routing (and fun story, our router is also middleware). But before we
get into actually coding out some middleware, let's see how they work. Let's see how this works with
two middlewares:

const methodForMiddleware = (req, res, next) => {

 // Whatever you want to do!

 next()

}

1

2

3

4

...

app.use(methodForMiddleware)

...

1

2

3

...

const methodForMiddlewareOne = (req, res, next) => {

 console.log("In middleware method 1")

 next()

}

const methodForMiddlewareTwo = (req, res, next) => {

 console.log("In middleware method 2")

 next()

1

2

3

4

5

6

7

8

9

10

When we run this code, what will happen is that when a request comes in, before we end up sending
our code to the router, we hop into methodForMiddlewareOne , execute the code, and then move to
the next middleware we said to use next, which just so happens to be methodForMiddlewareTwo , so
before we even get to our route, we'll see the console printing:

Let's try it with some real code. We can start with taking our code from the end of previous lecture
(with office character and parks and rec character routes)! We've now added
methodForMiddlewareOne and methodForMiddlewareTwo , and implemented them with app.use .

Notice that when you run the code and make a call, the console prints:

}

app.use(methodForMiddlewareOne)

app.use(methodForMiddlewareTwo)

app.use(somePredefinedRouter)

11

12

13

14

15

In middleware method 1

In middleware method 2

1

2

const express = require("express");

const officeRouter = require("./routes/office/officeRoute");

const parksAndRecRouter = require("./routes/parksAndRec/parksAndRecRoute");

const app = express();

const methodForMiddlewareOne = (req, res, next) => {

 console.log("In middleware method 1");

 next();

};

const methodForMiddlewareTwo = (req, res, next) => {

 console.log("In middleware method 2");

 next();

};

app.use(methodForMiddlewareOne);

app.use(methodForMiddlewareTwo);

app.use("/office", officeRouter);

app.use("/parksAndRec", parksAndRecRouter);

const port = 3000;

app.listen(port);

console.log("Now listening on port " + port);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Notice that these get run in order. Middleware functions get run in the order in which they are used.
Try removing the next() on line 9. Notice anything? What's happening is that we're not moving to
the next function defined. You'll likely forget a next here or there, but this architecture can be
extremely powerful because you can ultimately control the flow of the request (e.g. authentication).

Logging:

One of most common uses of middleware is logging. You'll often want to record what endpoints are
being called, with what parameters, and when. So let's remove our methods for middleware, and
write a quick logging method:

In middleware method 1

In middleware method 2

1

2

const express = require("express");

const officeRouter = require("./routes/office/officeRoute");

const parksAndRecRouter = require("./routes/parksAndRec/parksAndRecRoute");

const app = express();

const logger = (req, res, next) => {

 const requestedRoute = req.method + ":" + req.url;

 const timeOfRequest = new Date();

 const logBody = {

 requestedRoute,

 timeOfRequest,

 };

 console.log(logBody);

 next();

};

app.use(logger);

app.use("/office", officeRouter);

app.use("/parksAndRec", parksAndRecRouter);

const port = 3000;

app.listen(port);

console.log("Now listening on port " + port);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

We now have a logger written, so that every single time we make a call to our API, we log what's
being called and when! What's neat is that this will catch literally anything! Try requesting a route that
doesn't exist! What makes adding this middleware nice is that we don't need to place a console.log
(or call our logger function) at the beginning of ever function we route to.

Before moving on, let's keep our index clean and add our logger to our library:

/lib/logger.js

index.js

!"" index.js
!"" lib
$"" bodyParser.js
$"" logger.js
!"" package-lock.json
!"" package.json
$"" routes
 !"" office
 # !"" office.js
 # $"" officeRoute.js
 $"" parksAndRec
 !"" parksAndRecRoute.js
 $"" parksNRec.js

1

2

3

4

5

6

7

8

9

10

11

12

13

const logger = (req, res, next) => {

 const requestedRoute = req.method + ":" + req.url;

 const timeOfRequest = new Date();

 const logBody = {

 requestedRoute,

 timeOfRequest,

 };

 console.log(logBody);

 next();

};

module.exports = logger;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

const express = require("express");

const officeRouter = require("./routes/office/officeRoute");

const parksAndRecRouter = require("./routes/parksAndRec/parksAndRecRoute");

const logger = require("./lib/logger");

1

2

3

4

5

Body Parsing

When printing out that tree, you may have remembered that we have our bodyParser file. This is
some constantly repeated code that we have when we try to parse incoming json. Let's write some
code to turn that into middleware too!

/lib/bodyParser.js

And let's make sure to go change getMultipleCharacters in parksAndRec/parksAndRecRoute.js :

const app = express();

app.use(logger);

app.use("/office", officeRouter);

app.use("/parksAndRec", parksAndRecRouter);

const port = 3000;

app.listen(port);

console.log("Now listening on port " + port);

6

7

8

9

10

11

12

13

14

const bodyParser = (req) =>

 new Promise((resolve) => {

 let chunks = [];

 req.on("data", (chunk) => {

 console.log("Got chunk: ", chunk.toString());

 chunks.push(chunk);

 });

 req.on("end", () => {

 console.log("got everything!");

 resolve(Buffer.concat(chunks));

 });

 });

const parseJSON = async (req, res, next) => {

 const body = await bodyParser(req);

 const json = JSON.parse(body);

 req.body = json;

 next();

};

module.exports = parseJSON;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Not only did we remove the extra code calling the body parser, but when we saved it as req.body
we can access it within the route as if it were always there!! Try giving that endpoint a call! Works like
a charm, and our code looks much cleaner.

Before we move on, there's one minor issue. While we know our code works for our post, try getting
all the characters from /parksAndRec . Your response probably looks something along the lines of:

const express = require("express");

const parksAndRecCharacters = require("./parksNRec");

const getParksAndRecCharacters = (req, res) => {

 res.send(parksAndRecCharacters);

};

const getParksAndRecCharacter = (req, res) => {

 const characterName = req.params.characterName;

 res.send({

 characterName: characterName,

 actorName: parksAndRecCharacters[characterName],

 });

};

const getMultipleCharacters = async (req, res) => {

 const response = req.body.map((characterName) => ({

 character: characterName,

 actor: parksAndRecCharacters[characterName],

 }));

 res.send(response);

};

const parksAndRecRouter = express.Router();

parksAndRecRouter.get("/", getParksAndRecCharacters);

parksAndRecRouter.get("/:characterName", getParksAndRecCharacter);

parksAndRecRouter.post("/", getMultipleCharacters);

module.exports = parksAndRecRouter;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

(node:61562) UnhandledPromiseRejectionWarning: SyntaxError: Unexpected end of

JSON input

 at JSON.parse (<anonymous>)

 ...

1

2

3

Notice the unexpected end of JSON input . Well, with a traditional GET /parksAndRec call, we're
not adding in any input whatsoever. Clearly our middleware here is being too good and watching
everything. We want it only to be middleware for routes that take a body. Luckily for us, we can do
that! First we need to remove the middleware from index.js :

Next, in our parksAndRecRoutes.js (where our post route lives), we can use the middleware in
there. It looks a little different than what we've just seen. Try to spot it:

const express = require("express");

const officeRouter = require("./routes/office/officeRoute");

const parksAndRecRouter = require("./routes/parksAndRec/parksAndRecRoute");

const logger = require("./lib/logger");

const app = express();

app.use(logger);

app.use("/office", officeRouter);

app.use("/parksAndRec", parksAndRecRouter);

const port = 3000;

app.listen(port);

console.log("Now listening on port " + port);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

const express = require("express");

const parksAndRecCharacters = require("./parksNRec");

const parseJSON = require("../../lib/bodyParser");

const getParksAndRecCharacters = (req, res) => {

 res.send(parksAndRecCharacters);

};

const getParksAndRecCharacter = (req, res) => {

 const characterName = req.params.characterName;

 res.send({

 characterName: characterName,

 actorName: parksAndRecCharacters[characterName],

 });

};

const getMultipleCharacters = async (req, res) => {

 const response = req.body.map((characterName) => ({

 character: characterName,

 actor: parksAndRecCharacters[characterName],

 }));

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

What did we do? First, notice that we changed the construction of our parksAndRecRouter . The
router is incredibly powerful, and buy defining an overarching route, we can then decide which
specific functions to apply when a given method is called on that route.

Secondly, notice that in our .post(parseJSON, getMultipleCharacters) we're adding our
middleware as the first parameter, and then our destination function as our second. Curiously
enough, you can add as many middleware functions as you please, just so long as your destination
function is last.

This functionality allows for us to create a middleware that is code that'll be reused regularly, but not
necessarily for every single incoming request. You don't need to add route specific middleware if you
don't like, but it does keep your functions looking clean.

Middleware Packages via NPM:

Writing your own middleware is good to know. However, it's significantly easier to use middleware
that others have already written (and there have been a lot). Let's take our middleware files and
update them!

Morgan

A solid middleware to use is morgan. It's maintained by the same folks who maintain express. Just
like any other package, install it with:

Let's then remove the logger code we wrote in lib/logger and change that to be:

 res.send(response);

};

const parksAndRecRouter = express.Router();

parksAndRecRouter

 .route("/")

 .get(getParksAndRecCharacters)

 .post(parseJSON, getMultipleCharacters);

parksAndRecRouter.get("/:characterName", getParksAndRecCharacter);

module.exports = parksAndRecRouter;

23

24

25

26

27

28

29

30

31

32

33

34

npm i morgan1

const morgan = require("morgan");

const logger = morgan("tiny");

module.exports = logger;

1

2

3

4

5

https://github.com/expressjs/morgan#readme

If we wanted to further customize morgan, we could, but using the tiny parameter gives us some
minimal output (if you are more curious about the kinds of outputs you can have, read through the
morgan documentation via their github link).

Body-Parser

We put a lot of effort into our body parser, but as it turns out, we can just use the body-parser node
package:

And now we can take all of that body parsing code, and replace it with:

There's a smidge more we'll need to do for body-parser, and that's to update what we're passing into
the middleware in parksAndRecRoute.js :

npm i body-parser1

const bodyParser = require("body-parser");

module.exports = bodyParser;

1

2

3

const parseJSON = require("../../lib/middleware/bodyParser");

const express = require("express");

const parksAndRecCharacters = require("./parksNRec");

const getParksAndRecCharacters = (req, res) => {

 console.log("MIDDLE WARE WHEN? ");

 res.send(parksAndRecCharacters);

};

const getParksAndRecCharacter = (req, res) => {

 const characterName = req.params.characterName;

 res.send({

 characterName: characterName,

 actorName: parksAndRecCharacters[characterName],

 });

};

const getMultipleCharacters = async (req, res) => {

 const body = req.body;

 const response = body.map((characterName) => ({

 character: characterName,

 actor: parksAndRecCharacters[characterName],

 }));

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Notice on Line 34 we're using parseJSON.json() ? That's because many middlewares are factories in
that they offer many options, and we can select those options like .json() or by passing in a string
parameter above like "tiny" .

SwaggerUI

Now that we've updated our middlware packages, let's have our application serve up some actual
HTML documentation so that folks can actually understand how to use our API! We'll do this with
SwaggerUI. This module allows for us to easily serve up swagger pages (that we'll have to define) so
that users can go and see how our endpoints work!

In order for swagger to know how our API works, we'll need to create a swagger template file we can
just call swagger.js (note: swagger template files can be in many formats - we're going to stick with
a more javascript approach, but note that on the site's documentation, they tend to use .yml files).
We should put that in the /lib directory, and while we're at it, let's put our middleware in its own
separate directory too:

 res.send(response);

};

const parksAndRecRouter = express.Router();

parksAndRecRouter

 .route("/")

 .get(getParksAndRecCharacters)

 .post(parseJSON.json(), getMultipleCharacters);

parksAndRecRouter.get("/:characterName", getParksAndRecCharacter);

module.exports = parksAndRecRouter;

25

26

27

28

29

30

31

32

33

34

35

36

37

38

npm i swagger-ui-express1

.

!"" index.js
!"" lib
!"" middleware
!"" bodyParser.js
$"" logger.js
$"" swagger.js
!"" package-lock.json
!"" package.json

1

2

3

4

5

6

7

8

9

https://github.com/scottie1984/swagger-ui-express

For our swagger file, we'll need some basic information:

Now, in order for us to access this swagger, we'll need to actually use it with our express! Back in
index.js we need to add our swagger to our app.use :

$"" routes
 !"" office
 # !"" office.js
 # $"" officeRoute.js
 $"" parksAndRec
 !"" parksAndRecRoute.js
 $"" parksNRec.js

10

11

12

13

14

15

16

const swaggerDocument = {

 openapi: "3.0.1",

 info: {

 version: "1.0.0",

 title: "My application's API Document",

 description: "This is how you use my application!",

 termsOfService: "Nah",

 contact: {

 name: "Your name here",

 email: "someemail@umsl.edu",

 url: "www.google.com/somewebsite",

 },

 license: {

 name: "Apache 2.0",

 url: "https://www.apache.org/licenses/LICENSE-2.0.html",

 },

 },

};

module.exports = swaggerDocument;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

const express = require("express");

const officeRouter = require("./routes/office/officeRoute");

const parksAndRecRouter = require("./routes/parksAndRec/parksAndRecRoute");

const logger = require("./lib/middleware/logger");

const app = express();

const swaggerUI = require("swagger-ui-express");

const swaggerDoc = require("./lib/swagger");

app.use(logger);

1

2

3

4

5

6

7

8

9

Now, when you go to your swagger page, you should see a very basic site! Let's add a route in
swagger.js to make this useful:

app.use("/api-docs", swaggerUI.serve, swaggerUI.setup(swaggerDoc));

app.use("/office", officeRouter);

app.use("/parksAndRec", parksAndRecRouter);

const port = 3000;

app.listen(port);

console.log("Now listening on port " + port);

console.log(`Swagger docs at localhost:${port}/api-docs`);

10

11

12

13

14

15

16

17

const swaggerDocument = {

 openapi: "3.0.1",

 info: {

 version: "1.0.0",

 title: "My application's API Document",

 description: "This is how you use my application!",

 termsOfService: "Nah",

 contact: {

 name: "Matt Lane",

 email: "mjlny2@umsl.edu",

 url: "www.google.com/mattlane",

 },

 license: {

 name: "Apache 2.0",

 url: "https://www.apache.org/licenses/LICENSE-2.0.html",

 },

 },

 paths: {

 "/office": {

 get: {

 description: "GET THE OFFICE CHARACTERS",

 responses: {

 "200": {

 description: "200 - ok - got the characters",

 content: {

 "application/json": {

 example: {

 "Michael Scott": "Steve Carell",

 "Dwight Schrute": "Rainn Wilson",

 "Jim Halpert": "John Krasinski",

 "Pam Beesly": "Jenna Fischer",

 "Ryan Howard": "B.J. Novak",

 "Andy Bernard": "Ed Helms",

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Now we have a basic path, go back to your swagger ui! Now you can actually click try it out and
get a legitimate response back!

Though one thing to note is that GET's are relatively easy to create a path for, doing something with a
body can be slightly more frustrating. Let's add a path for our parks and rec route:

 "Robert California": "James Spader",

 "Stanley Hudson": "Leslie David Baker",

 "Kevin Malone": "Brian Baumgartner",

 "Meredith Palmer": "Kate Flannery",

 "Angela Martin": "Angela Kinsey",

 "Oscar Martinez": "Oscar Nunez",

 "Phyllis Lapin": "Phyllis Smith",

 "Roy Anderson": "David Denman",

 "Jan Levinson": "Melora Hardin",

 "Kelly Kapoor": "Mindy Kaling",

 "Toby Flenderson": "Paul Lieberstein",

 "Creed Bratton": "Creed Bratton",

 "Darryl Philbin": "Craig Robinson",

 "Erin Hannon": "Ellie Kemper",

 "Gabe Lewis": "Zach Woods",

 "Holly Flax": "Amy Ryan",

 },

 },

 },

 },

 },

 },

 },

 },

};

module.exports = swaggerDocument;

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

const swaggerDocument = {

 openapi: "3.0.1",

 info: {

 version: "1.0.0",

 title: "My application's API Document",

 description: "This is how you use my application!",

 termsOfService: "Nah",

 contact: {

1

2

3

4

5

6

7

8

 name: "Matt Lane",

 email: "mjlny2@umsl.edu",

 url: "www.google.com/mattlane",

 },

 license: {

 name: "Apache 2.0",

 url: "https://www.apache.org/licenses/LICENSE-2.0.html",

 },

 },

 paths: {

 "/office": {

 get: {

 description: "GET THE OFFICE CHARACTERS",

 responses: {

 "200": {

 description: "200 - ok - got the characters",

 content: {

 "application/json": {

 example: {

 "Michael Scott": "Steve Carell",

 "Dwight Schrute": "Rainn Wilson",

 "Jim Halpert": "John Krasinski",

 "Pam Beesly": "Jenna Fischer",

 "Ryan Howard": "B.J. Novak",

 "Andy Bernard": "Ed Helms",

 "Robert California": "James Spader",

 "Stanley Hudson": "Leslie David Baker",

 "Kevin Malone": "Brian Baumgartner",

 "Meredith Palmer": "Kate Flannery",

 "Angela Martin": "Angela Kinsey",

 "Oscar Martinez": "Oscar Nunez",

 "Phyllis Lapin": "Phyllis Smith",

 "Roy Anderson": "David Denman",

 "Jan Levinson": "Melora Hardin",

 "Kelly Kapoor": "Mindy Kaling",

 "Toby Flenderson": "Paul Lieberstein",

 "Creed Bratton": "Creed Bratton",

 "Darryl Philbin": "Craig Robinson",

 "Erin Hannon": "Ellie Kemper",

 "Gabe Lewis": "Zach Woods",

 "Holly Flax": "Amy Ryan",

 },

 },

 },

 },

 },

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

For our parks and rec path, we actually have to create a requestBody that we can serve up so that
the user will understand what to send to the API!

 },

 },

 "/parksAndRec": {

 post: {

 summary: "Get multiple characters back based on their character

names",

 consumes: "application/json",

 produces: "application/json",

 requestBody: {

 description: "an array of names to send",

 required: true,

 content: {

 "application/json": {

 schema: {

 type: "array",

 items: {

 type: "string",

 example: "Ann Perkins",

 },

 },

 },

 },

 },

 responses: {

 "200": {

 description: "A response with the desired characters and actors",

 },

 },

 },

 },

 },

};

module.exports = swaggerDocument;

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

	Middleware!
	Logging:
	Middleware Packages via NPM:
	SwaggerUI

